# PIVAL: Pharmacokinetic Interactions Between Valproic Acid and Lamotrigine: A Systematic Review of Literature and Retrospective Chart Review to Identify Site-Specific Practices On Mental Health Wards.

Amanda Chen, B.Sc., B.Sc.(Pharm.); Tony Kiang, B.Sc.(Pharm.), ACPR, Ph.D.; Gillian Lagnado, B.Sc.(Pharm.), Pharm.D., BCPP; Michael Legal, B.Sc.(Pharm.), ACPR, Pharm.D.; Ajay Bains, B.Sc.(Pharm.), ACPR

N - 37

# Background

- Lamotrigine (LTG) is an antiepileptic agent that is also used off-label as a mood stabilizer
- Mean t<sub>1/2</sub> of 26.4h
- Primarily metabolized by hepatic glucuronidation via UDPglucuronosyltransferase (UGT) enzymes
- Therapeutic synergism between VPA and LTG has been demonstrated in refractory epileptics and in treatment-resistant psychiatric disorders, including bipolar and schizophrenia disorders
- In combination with VPA, LTG plasma levels are elevated secondary to ↑ t<sub>1/2</sub> and ↓ total clearance
- Data on the mechanism of this PK interaction is lacking
- Current hypothesis: VPA acts as a potent, broad spectrum UGT inhibitor

### Objectives:

- Summarize current state of knowledge regarding VPA/LTG PK interaction
- Describe clinical significance and impact of this interaction

# Endpoints

#### Primary:

 Frequency of therapy modification aimed at reducing or treating VPA/LTG interaction risk

### Secondary:

- Quantify types of therapeutic modifications
- Describe clinical outcomes experienced
- Characterize rationale for therapeutic modifications

### Methods

### Systematic Review:

- Literature search using PUBMED, EMBASE, Google Scholar, TRIP database, CINAHL, ISI Web of Science and PsychINFO (until February 2012), with search terms "lamotrigine," "valproic acid," "interaction," "UGT," and/or "drug glucuronidation"
  - Inclusion Criteria: English, in vivo human studies, quantitative PK data analysis
- Retrospective Chart Review:
- Eligible adult patients (N=37) admitted Sept 05 Sept 11 were identified using Centricity pharmacy software

| Inclusion                                                                                             | Exclusion  |
|-------------------------------------------------------------------------------------------------------|------------|
| <ul> <li>Mental Health ward (PASU, 2N, 8C, 9A)</li> <li>Received VPA and LTG concomitantly</li> </ul> | • < 18 yoa |

Charts reviewed for study endpoints and analyzed using descriptive statistics

# Results of Retrospective Review Table 1 Baseline Characteristics

| Table 1. Baseline Characteristics      | N = 37       |
|----------------------------------------|--------------|
| Sex (female)*                          | 21           |
| Average age (in years)                 | 44.3 (24-79) |
| Most Responsible Psychiatric Diagnosis | %            |
| Bipolar Disorder                       | 95           |
| Major Depressive Disorder              | 73           |
| Schizophrenia                          | 27           |
| Epilepsy                               | 14           |
| Other                                  | %            |
| Polysubstance Abuse **                 | 32           |
| Chronic Alcoholism                     | 27           |
| Hepatitis B carrier                    | 5            |
| <b>Common Concurrent Medications</b>   | %            |
| Antipsychotic                          | 100          |
| Antidepressant                         | 57           |
| Benzodiazepine                         | 51           |
| Anticonvulsant                         | 16           |

<sup>\* 2</sup> transgendered

# Figure 1: Frequency of Interventions



Figure 2: Clinical Outcomes Experienced











# Figure 3: Types of Interventions and Rationale



### Results of Systematic Review

Medline, EMBASE, Google Scholar, TRIP database, CINAHL, ISI Web of Science, PsychINFO Search terms: valproic acid, lamotrigine and (UGT OR drug glucuronidation)



| LTG PK Parameters       | Mean t1/2<br>(h)     | Mean CI<br>(ml/kg/min) | Mean AUC<br>(µg/ml*h) | Mean LDR (μg/ml/mg/kg) |
|-------------------------|----------------------|------------------------|-----------------------|------------------------|
| LTG Monotherapy         | 21.9-37.4            | 0.3-0.7                | 25.4-70.9             | 1.0-1.9                |
| LTG/VPA                 | 38.7-74.6            | 0.2-0.4                | 41.4-91.8             | 3.4-3.6                |
| Mean % Difference (±SD) | <b>† 95%</b> (± 46%) | <b>↓ 49%</b> (± 21%)   | <b>† 93%</b> (± 58%)  | <b>1 219%</b> (± 99%)  |

### Conclusion and Recommendations:

- Synergistic LTG/VPA therapy more effective than monotherapy in treatment resistant epilepsy and/or psychiatric mood disorders
- Significant PK interaction with ↑ inter-patient variability → may ↑ ADR risk
- Unknown mechanism behind PK interaction → Ø in vivo data quantifying LTGglucuronide metabolite generated
- Yet papers continue to cite VPA inhibition of UGT based on unfounded evidence
- Consider starting with ↓ LTG dose (12.5mg vs. 25mg daily) when adding to VPA
- Small minority (N = 5 /37) → transient, non-life threatening ADR suspected to be result of VPA/LTG interaction
- N = 1/37 → SJS, but liver dysfunction (hepatitis B carrier) confounding risk factor
- LTG/VPA in treatment resistant cases may be safe and effective in those with Ø other risk factors for LTG toxicity (i.e. liver dysfunction)
  - Monitoring and patient education are necessary

# Limitations:

### Retrospective Chart Review:

- Retrospective, single site, ↓ duration, ↓ sample size
- Not all interventions documented in patient chart
- Systematic Review:
  - Poor level of evidence (10/14 papers → Level II-3, uncontrolled), ↓ sample size,
     ↓ duration of treatment, merged children and adult data

<sup>\*\*</sup> marijuana, cocaine, mushrooms, amphetamine use