Characterization of Community Acquired Respiratory Virus (CARV) Infections, Treatment, and Outcomes in Lung Transplant Recipients

Mahsa Movahedan, PharmD; Robert C. Wright, PharmD; Roland G. Nador, MD; Monica Norena, MSc; Joel Singer, PhD; Nilufar Partovi, PharmD.

Background

- CARV infections are common post-lung transplant likely as a result of anatomical, physiologic, and immunologic changes.
- CARV infections result in varying short and long-term complications:
- Short term: asymptomatic infection \Rightarrow pneumonia, acute lung allograft dysfunction, acute rejection, hospitalization
- Long term: chronic lung allograft dysfunction (CLAD), allograft failure
- CLAD is defined as a persistent decline of $\geq 20\%$ in forced expiratory volume in one second (FEV₁), a persistent decline of \geq 10% in total lung capacity (TLC), or both, compared with the post-transplant baseline.
- CLAD is the leading cause of mortality in patients surviving more than one year post transplant
- Limited CARV treatment options available and no expert consensus. Local protocol includes:
- High dose intravenous (IV) glucocorticoid (steroid pulse)
- Oral glucocorticoid taper following steroid pulse in select patients (steroid taper) IV immunoglobulin (IVIG)
- Antivirals (e.g. oseltamivir for influenza, ribavirin for respiratory syncytial virus)

Objectives

- Describe the incidence, etiology, and treatment of community acquired respiratory virus (CARV) infections in post-lung transplant patients
- Identify adverse drug events associated with glucocorticoids in treatment of CARV infections • Determine the relationship between initial CARV infection and chronic lung allograft dysfunction (CLAD) development at 3 years follow up

Methods

Design

Single-center retrospective chart review

Population

Adult lung transplant recipients transplanted at VGH

Data Source

- Paper charts, provincial transplant database, and electronic medical records **Analysis**
- Descriptive analysis used to identify meaningful trends
- Kaplan-Meier curves used to determine the association of CARV infections with CLAD Univariate Cox modeling used to evaluate CARV as a time-dependent variable and a risk factor for CLAD development
- A second similar modeling performed with CARV stratified according to infection severity: no CARV, mild infection, and lower respiratory tract infection.

isolation in VGH's post lung-transplant population. URTI=Upper Respiratory Tract Infection, PNA=Pneumonia, LRT=Lower Respiratory Tract

esuits			
able 1: Baseline Characteristics			
Demographics	CARV Infections (N=143) n(%)	No CARV (N=48) n(%)	
Age at transplant [median, (range)]	59 (19-69)	59.5 (31-69)	
/ale Sex	96 (67)	32 (59)	
Pre-transplant Lung Disease			
Obstructive	51 (36)	27 (56)	
Restrictive	81 (57)	19 (40)	
/ascular	8 (6)	1 (2)	
Suppurative	17 (12)	4 (7)	
Pre-transplant comorbidities			
Diabetes	23 (16)	8 (15)	
Asthma	4 (3)	1 (2)	
GERD	47 (33)	8 (15)	
CMV serostatus			
२+	83 (58)	23 (43)	
D+/R-	31 (22)	14 (26)	
D-/R-	29 (20)	11 (20)	
ledications			
nhaled or intranasal corticosteroids	14 (10)	14 (26)	
Type of lung transplant			
Single	16 (11)	3 (6)	
Bilateral	127 (89)	45 (83)	

GERD = Gastroesophageal Reflux Disease, R+ = Recipient CMV IgG positive, D+/R- = Donor CMV IgG positive, recipient CMV IgG negative (mismatch), D-/R- = Donor CMV IgG negative, recipient CMV IgG negative

CoV = Non-SARS-CoV-2 coronavirus, HMPV = Human Metapneumovirus, PIV = Parainfluenza virus, R/E = Rhinovirus/Enterovirus, RSV = Respiratory syncytial virus Figure 2: Distribution of type of initial CARV infection.

Distribution of Treatment Strategies, N(%)

LRTI = Lower respiratoy tract infections

Steroid Pulse = Methylprednisolone 10mg/kg once daily x 3 doses Steroid taper = Prednisone 1mg/kg/day reduce by 5mg daily dose every 3 days until at previous baseline dose of 10-15mg/day

IVIG = Intravenous immunoglobulins 0.5g/kg x 1 dose

Antiviral = Oseltamivir 75mg BID x 10 days for influenza and Ribavirin 10mg/kg BID x 10 days for RSV/PIV/HMPV. In this initial CARV population 9 patients (6%) received ribavirin and 7 patients (5%) received oseltamivir. Figure 3: Treatment strategies used in management of initial CARV infections.

How you want to be treated

Influenza

PIV N=11, 10%

- with glucocorticoid treatment of CARV infections.

Limitations

- The limitations of this study include:
- Retrospective design, small sample size, and low event rate

Conclusions

- Majority of patients (75%) developed at least one CARV infection during the follow up period, most commonly in the first year post-transplant.
- 40% of patients had lower respiratory tract infections (LRTIs), which were treated more aggressively with steroid pulse and taper regimen and IVIG.
- CARV was not associated with a more rapid progression to chronic lung allograft dysfunction (CLAD) in our population.
- Glucocorticoid treatment of CARV was associated with important adverse drug events, including Cytomegalovirus reactivation.
- Future studies with larger sample sizes, and assessment of later time points are needed.

