Postoperative NSAID use and Incidence of Renal Failure in Cardiac Surgery (NIRF)

Lora (Luo) Wang, B.Sc.(Pharm); Ann-Marie Liberman, B.Sc.Phm, ACPR; Jennifer Haymond, B.Sc.(Pharm), ACPR, Pharm.D.; Daniel R. Wong, MD MPH FRCSC

Background

- Open heart surgery poses risk for acute kidney injury (AKI)
- Incidence of AKI after cardiopulmonary bypass up to 20-30%
- No widely accepted standard of care for pain management postcardiac surgery
- Acetaminophen and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) used in Royal Columbian Hospital (RCH) to reduce opioids
- Post-open heart surgery NSAID use may be associated with increased renal injury

Objective

 To evaluate the possible association between post-operative NSAID use and composite renal risk, injury, and failure in cardiac surgery patients at RCH within 14 days post-operation, or at earlier discharge

Methods

Design

Retrospective unmatched case-control

Population

 Patients receiving open-heart surgery at RCH from Feb 4, 2011 – Sep 13, 2012

Inclusion

- >18 years of age
- Coronary Artery Bypass Graft (CABG), valve replacement or repair, or combination surgery

Exclusion

- Pre-existing renal disease
- Stage III, IV, V renal disease (KDOQI* criteria), dialysis
- Shock prior to surgery requiring inotropes or vasopressors
- Peri-operative Intra-Aortic Balloon Pump (IABP) use
- Cardiac catheterization within 48 hours of surgery

Outcome

Composite of renal risk, injury, failure, dialysis

Statistical Analysis

- Estimated sample size (N=782) to show odds ratio (OR) of 1.5 assuming 55% exposure rate in control group
- Characteristic differences calculated with Chi-square analysis
- Association between NSAIDs and renal impairment evaluated using logistic regression

Definitions

Based on Risk-Injury-Failure-Loss-End stage kidney disease (RIFLE) from Acute Dialysis Quality Initiative (ADQI)

No renal impairment

- Serum creatinine (SCr) increase <1.5x or
- Estimated glomerular filtration rate (eGFR) decrease <25%
 Renal risk
- Increased SCr x 1.5 or eGFR decrease >25%

Renal injury

• Increased SCr x 2 or eGFR decrease >50%

Renal failure

• Increased SCr x 3 or eGFR decrease >75%

Table 1: Patient Characteristics No Renal Impairment | Renal Impairment (N=162)(N=224)69 years Age (median) 67 years 73.5% Male 77.2% Surgery type Valve 17.9% 11.7% **CABG** 73.7% 74.1% Combination 8.5% 13.6% 34.6% **Diabetes** 27.7% **Ejection fraction <40%** 15.6% 13.6% Cardiopulmonary bypass 97.5 min 105 min time (median) Fluid balance in operating 1457.5 mL 1480.0 mL room (median)

Preliminary Results

- 1320 patients screened
- 386 patients included to date

Outcomes

	No Renal Impairment (N=224)	Renal Impairment (N=162)	Odds Ratio (95% CI)
NSAIDs			
Indomethacin	71.0%	50.6%	0.42 (0.28-0.64)
Ibuprofen	69.2%	52.5%	0.49 (0.32-0.75)
Naproxen	0.9%	0	NS
Any NSAIDs	80.8%	67.3%	0.57 (0.45 - 0.74)
Number of doses of any NSAIDs	10 (median)	3 (median)	0.94 (0.91 – 0.97)
ACEI	30.4%	32.1%	NS
ARB	4.0%	1.9%	NS
Aminoglycosides	0.4%	0	NS
Vancomycin	5.8%	11.7%	NS
Furosemide	75.0%	85.2%	1.92 (1.13-3.25)

After adjusting for age, gender and diabetes:

	OR (95% CI)
Any NSAIDs received	0.68 (0.44 – 1.03)
Any NSAIDs total doses	1.06 (0.92 – 1.22)

 No significant associations between renal impairment and gender, age, surgery type, diabetes, fluid balance in OR, ACEI use, or ARB use

Limitations

- Retrospective chart review
 - Inability to adjust for unknown confounders
- Preliminary analysis, underpowered

Conclusion

 Preliminary data show no association between renal impairment and NSAID use post-cardiac surgery when adjusted for age, gender and diabetes

References

Care of the Cardiac Surgery Patient: Part II. Curr Probl Surg 2004;41:526-74. Kumar A and Sunega M. Cardiopulmonary bypass-associated acute kidney injuring

Jumar A and Sunega M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology 2011;114(4):964-70

Iangano C, Diamonstone L, Ramsay J et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. Ann Int Med

iffin M, Yared A, Ray W. Nonsteroidal anti-inflammatory drugs and acute renal failure in elderly persons. Am J Epidemiol 2000;151:488-96

Bellomo R et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dia (ADQI) Group. Critical Care 2004;8:R204-12
Haase M et al. A Comparison of the RIFLE and Acute Kidney Injury Network classifications for Cardiac Surgery-Associated Acute Kidney Injury. J Thoracic Cardiovasc Surg 2009;138(6):1370-6
National Kidney Foundation: KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, classification, and stratification. Am J Kidney Dis 39:S1-S266, 2002 (suppl 1)1

*KDOQI: Kidney Disease Outcomes Quality Initiative

