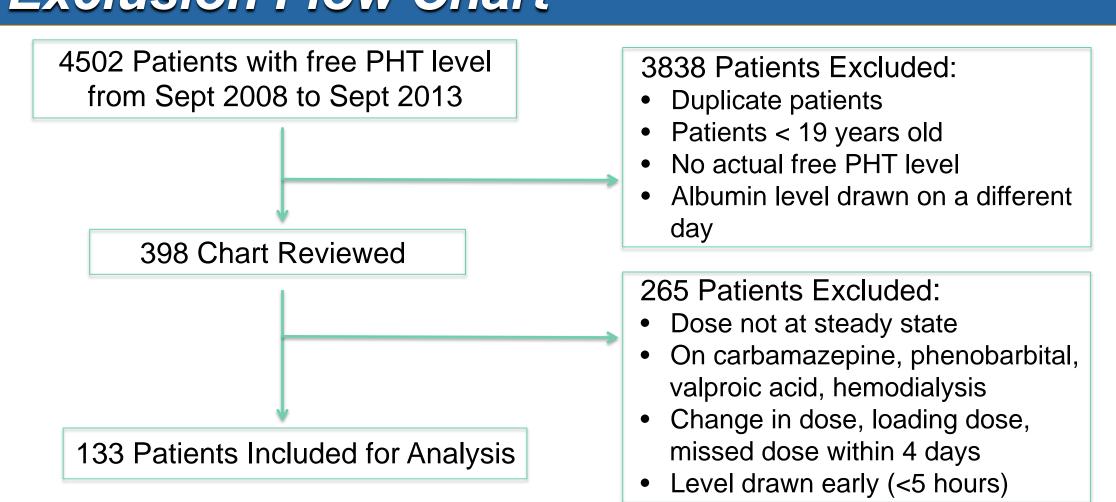
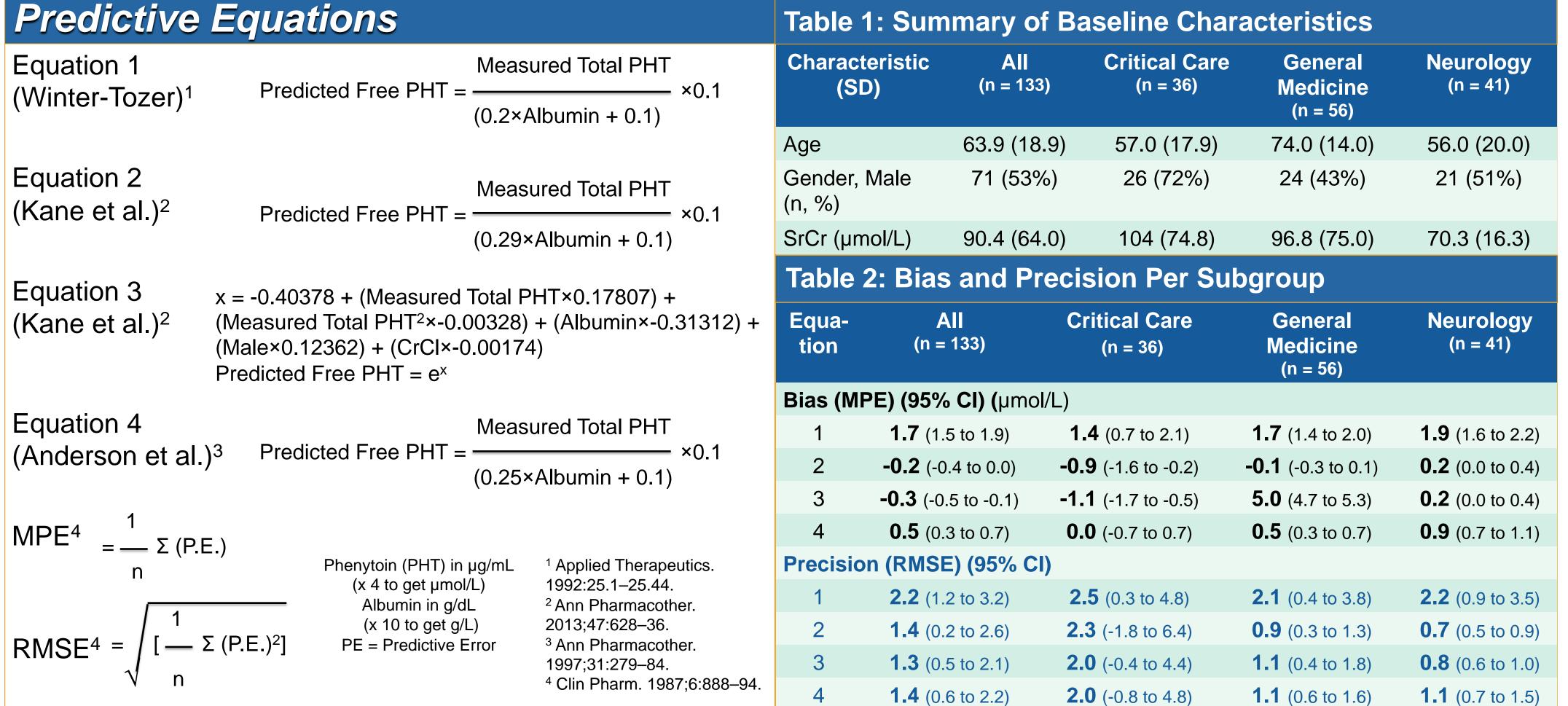
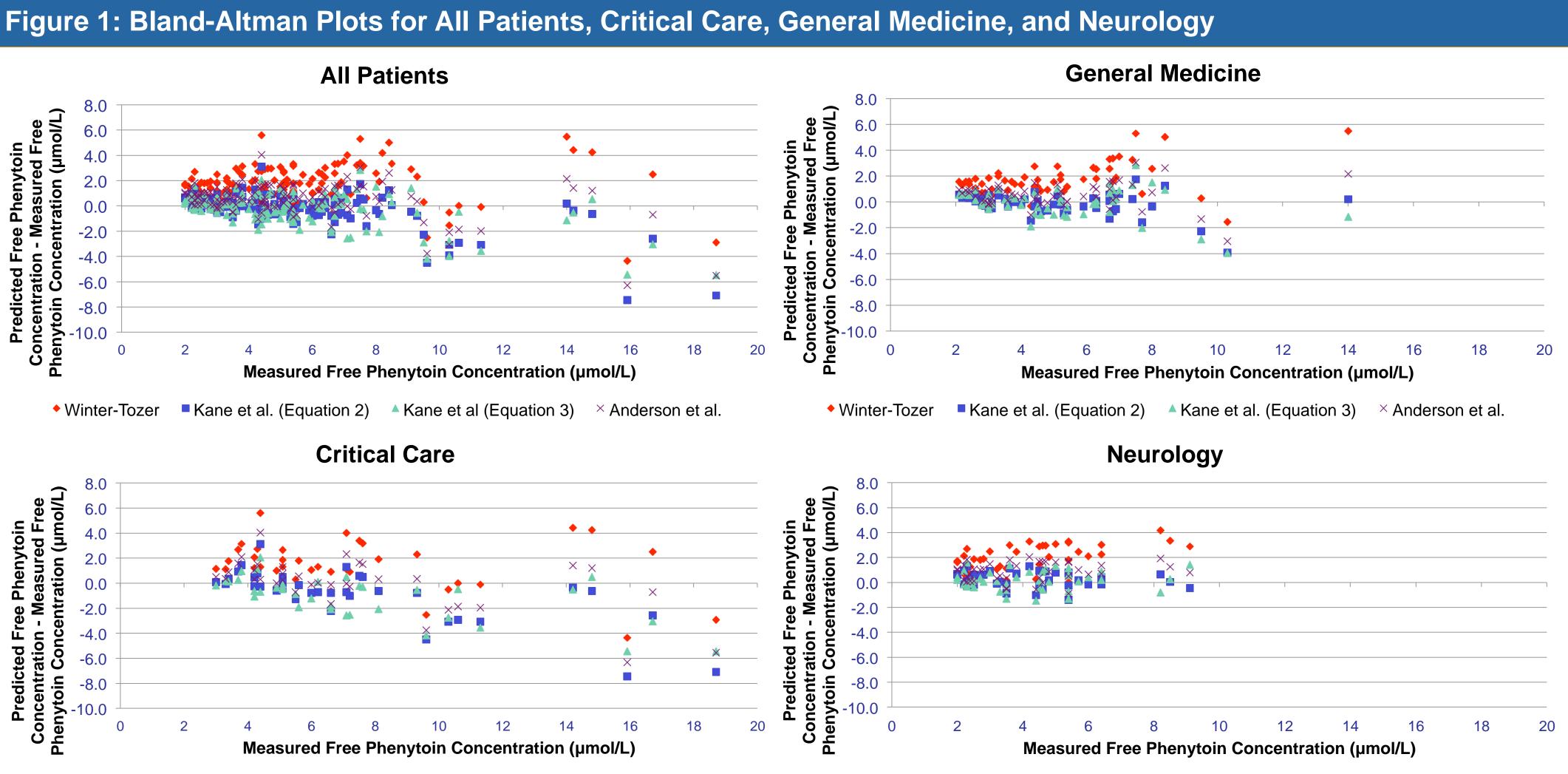
Predictive Performance of the Winter-Tozer and Its Derivative Equations for Estimating Free Phenytoin Concentrations in Specific Patient Populations

Wendy Cheng, B.Sc.(Pharm.); Tony Kiang, B.Sc.(Pharm.), Ph.D., ACPR; Penny Bring, B.Sc.(Pharm.D.; Mary H. H. Ensom, Pharm.D., FASHP, FCCP, FCSHP, FCAHS

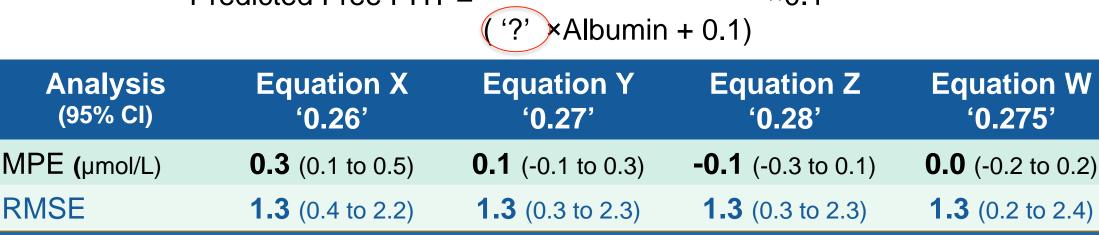

Background

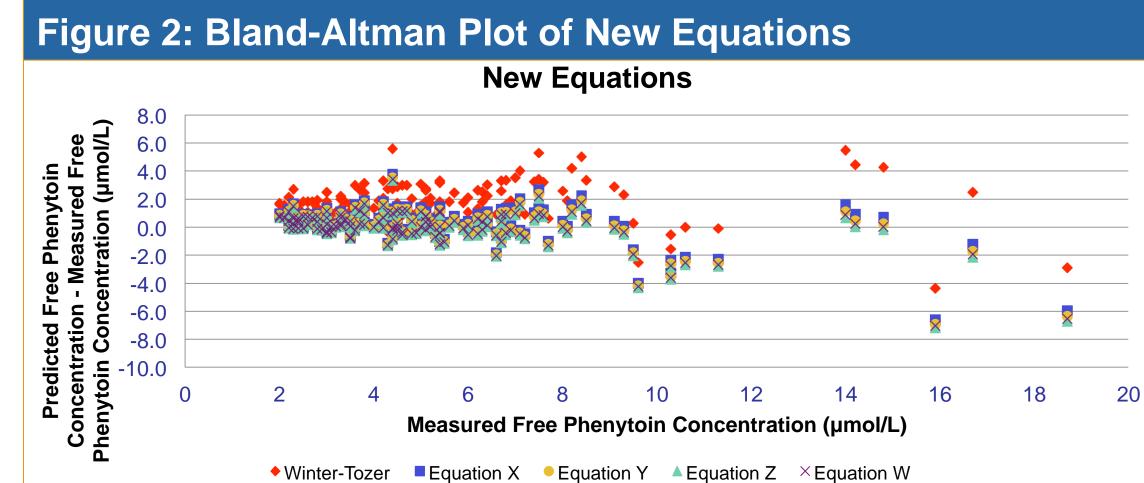

- Free phenytoin (PHT) concentration reflects efficacy and toxicity
- Low albumin concentration may affect total PHT concentration and free fraction, but usually causes no change in free concentration
- Cannot estimate free PHT concentration from total PHT concentration when free fraction is unknown
- Winter-Tozer equation most commonly used to predict free PHT concentration
- Overall predictive performance of this equation is poor
- Other studies found bias and imprecision and developed their own equations, which have not been validated in other studies


Methods

- Retrospective chart review at Vancouver General Hospital from Sept 2008 to Sept 2013
- Inclusion: > 18 years old, free PHT level
- Exclusion: level is not at steady state; patients on carbamazepine, phenobarbital, valproic acid, and hemodialysis
- Convenience sample size of ~50 patients per subgroup (Critical Care, General Medicine, Neurology)
- Mean predictive error (MPE) to assess bias and root mean square error (RMSE) to assess precision
- Primary objective:
 - To assess the bias and precision of the Winter-Tozer equation and its derivatives in predicting free PHT concentrations in different patient subpopulations
- Secondary objective:
 - To assess the effect of age, gender, eGFR, and total daily dose on the bias and precision of the Winter-Tozer equation and its derivatives
 - To derive new equations that will better predict free PHT concentration

Exclusion Flow Chart





					modearea i ree i mente in conte an					
 ◆ Winter-Tozer ■ Kane et al. (Equation 2) ▲ Kane et al. (Equation 3) ★ Anderson et al. ◆ Winter-Tozer ■ Kane et al. (Equation 2) ▲ Kane et al. (Equation 3) 										
Table 3: Bias and Precision for Age, Gender, and eGFR										
MPE (µmol/L) /RMSE (95% CI)	Equation 1	Equation 2	Equation 3	Equation 4	MPE (µmol/L) /RMSE (95% CI)	Equation 1	Equation 2	Equation 3	Equation 4	
≤ 60 years (n = 53)	1.6 (1.2 to 2.0)	-0.3 (-0.8 to 0.2)	-0.5 (-0.9 to -0.1)	0.4 (0.0 to 0.8)	(ml /min)	-0.1 (-2.4 to 2.2)	-2.5 (-5.0 to 0.0)	-1.3 (-3.5 to 0.9)	-1.6 (-4.0 to 0.8)	
	2.2 (1.1 to 3.3)	1.7 (-1.1 to 4.5)	1.5 (-0.1 to 3.1)	1.6 (-0.3 to 3.5)		2.6 (-3.0 to 8.2)	3.8 (-13.5 to 21.1)	2.9 (-7.0 to 12.8)	3.2 (-9.2 to 15.6)	
> 60 years (n = 80)	1.8 (1.5 to 2.1)	-0.2 (-0.4 to 0.0)	-0.1 (-0.4 to 0.2)	0.5 (0.3 to 0.7)	30-59	1.3 (0.8 to 1.8)	-0.5 (-0.9 to -0.1)	-0.3 (-0.8 to 0.2)	0.2 (-0.2 to 0.6)	
	2.8 (1.3 to 4.3)	1.4 (0.8 to 2.0)	1.5 (0.9 to 2.1)	1.5 (0.9 to 2.1)		1.9 (-0.4 to 4.2)	1.2 (-0.1 to 2.5)	1.3 (-0.1 to 2.7)	1.1 (0.2 to 2.0)	
Male (n = 71)	1.7 (1.3 to 2.1)	-0.2 (-0.6 to 0.2)	-0.1 (-0.4 to 0.2)	0.5 (0.2 to 0.8)	60-89 (n = 54)	2.0 (1.7 to 2.3)	-0.1 (-0.5 to 0.3)	0.0 (-0.4 to 0.4)	0.7 (0.4 to 1.0)	
	2.3 (0.8 to 3.8)	2.3 (0.8 to 3.8)	1.3 (0.2 to 2.4)	1.5 (0.1 to 2.9)		2.4 (1.1 to 3.7)	1.3 (-0.5 to 3.1)	1.3 (0.1 to 2.5)	1.4 (0.3 to 2.5)	
Female (n = 62)	1.7 (1.4 to 2.0)	-0.2 (-0.5 to 0.1)	-0.4 (-0.7 to -0.1)	0.5 (0.2 to 0.8)	≥ 90 (n = 46)	3.1 (2.7 to 3.5)	0.1 (-0.1 to 0.3)	-0.6 (-0.9 to -0.3)	1.2 (0.9 to 1.5)	
	2.2 (0.8 to 3.6)	1.1 (0.2 to 2.0)	1.4 (0.5 to 2.3)	1.2 (0.6 to 1.8)		2.9 (1.0 to 4.8)	1.0 (0.6 to 1.4)	1.3 (0.9 to 1.7)	1.5 (0.8 to 2.2)	

Table 3 (continued): Bias and Precision for Total Daily Dose								
Dose (mg)	Analysis (95% CI)	Equation 1	Equation 2	Equation 3	Equation 4			
< 300 (n = 18)	MPE (µmol/L)	1.7 (1.1 to 2.3)	-0.2 (-0.5 to 0.1)	-0.3 (-0.8 to 0.2)	0.5 (0.1 to 0.9)			
	RMSE	2.1 (-1.2 to 5.4)	0.7 (0.4 to 1.0)	1.2 (0.4 to 2.0)	1.0 (0.5 to 1.5)			
300 (n = 53)	MPE (µmol/L)	1.5 (1.0 to 2.0)	-0.6 (-1.1 to -0.1)	-0.6 (-1.0 to -0.2)	0.2 (-0.3 to 0.7)			
	RMSE	2.3 (0.6 to 4.0)	1.8 (-1.0 to 4.6)	1.6 (-0.1 to 3.3)	1.7 (-0.1 to 3.5)			
301-499 (n = 43)	MPE (µmol/L)	1.7 (1.3 to 2.1)	-0.1 (-0.4 to 0.2)	-0.1 (-0.4 to 0.2)	0.6 (0.3 to 0.9)			
	RMSE	2.0 (0.7 to 3.3)	0.9 (0.0 to 1.8)	0.9 (0.1 to 1.7)	1.1 (0.4 to 1.8)			
≥ 500 (n = 19)	MPE (µmol/L)	2.3 (1.7 to 2.9)	0.2 (-0.4 to 0.8)	0.3 (-0.3 to 0.9)	1.0 (0.5 to 1.5)			
	RMSE	2.6 (-0.6 to 5.8)	1.2 (-0.1 to 2.5)	1.3 (0.0 to 2.6)	1.5 (-0.2 to 3.2)			
Table 4: Bias and Precision of New Equations								
	Measured Total PHT							

Predicted Free PHT =

Table 5: Dose Changes Made From Predictive Equations									
Equation	Actual	1	2	3	4	X	Y	Z	W
> 8 µmol/L	18	43	16	15	26	23	20	16	19
Changes to Dose (n)		25	2	3	8	5	2	2	1
< 4 µmol/L	47	21	48	49	36	38	39	44	43
Changes to Dose (n)		26	1	2	11	9	8	3	4
Total (n, %)		51 (38)	3 (2)	5 (4)	19 (14)	14 (11)	10 (8)	5 (4)	5 (4)
D 11									

Results

- The Winter-Tozer equation tended to overpredict
- The Kane et al. equations (Equation 2 and 3) tended to underpredict
- The Anderson et al. equation generally overpredicted
- In general, there was more bias and imprecision associated with the Winter-Tozer equation than the other equations

Conclusion

- The overall predictive performance of the Winter-Tozer equation in this population was poor
- We developed new derivative equations with reduced bias

