Predictive Performance of the Winter-Tozer and Its Derivative Equations for Estimating Free Phenytoin Concentrations in Specific Patient Populations Wendy Cheng, B.Sc.(Pharm.); Tony Kiang, B.Sc.(Pharm.), Ph.D., ACPR; Penny Bring, B.Sc.(Pharm.D.; Mary H. H. Ensom, Pharm.D., FASHP, FCCP, FCSHP, FCAHS # Background - Free phenytoin (PHT) concentration reflects efficacy and toxicity - Low albumin concentration may affect total PHT concentration and free fraction, but usually causes no change in free concentration - Cannot estimate free PHT concentration from total PHT concentration when free fraction is unknown - Winter-Tozer equation most commonly used to predict free PHT concentration - Overall predictive performance of this equation is poor - Other studies found bias and imprecision and developed their own equations, which have not been validated in other studies ## Methods - Retrospective chart review at Vancouver General Hospital from Sept 2008 to Sept 2013 - Inclusion: > 18 years old, free PHT level - Exclusion: level is not at steady state; patients on carbamazepine, phenobarbital, valproic acid, and hemodialysis - Convenience sample size of ~50 patients per subgroup (Critical Care, General Medicine, Neurology) - Mean predictive error (MPE) to assess bias and root mean square error (RMSE) to assess precision - Primary objective: - To assess the bias and precision of the Winter-Tozer equation and its derivatives in predicting free PHT concentrations in different patient subpopulations - Secondary objective: - To assess the effect of age, gender, eGFR, and total daily dose on the bias and precision of the Winter-Tozer equation and its derivatives - To derive new equations that will better predict free PHT concentration ## Exclusion Flow Chart | | | | | | modearea i ree i mente in conte an | | | | | | |---|-------------------------|---------------------------|----------------------------|--------------------------|--|---------------------------|----------------------------|----------------------------|---------------------------|--| | ◆ Winter-Tozer ■ Kane et al. (Equation 2) ▲ Kane et al. (Equation 3) ★ Anderson et al. ◆ Winter-Tozer ■ Kane et al. (Equation 2) ▲ Kane et al. (Equation 3) | | | | | | | | | | | | Table 3: Bias and Precision for Age, Gender, and eGFR | | | | | | | | | | | | MPE (µmol/L)
/RMSE (95% CI) | Equation 1 | Equation 2 | Equation 3 | Equation 4 | MPE (µmol/L)
/RMSE (95% CI) | Equation 1 | Equation 2 | Equation 3 | Equation 4 | | | ≤ 60 years (n = 53) | 1.6 (1.2 to 2.0) | -0.3 (-0.8 to 0.2) | -0.5 (-0.9 to -0.1) | 0.4 (0.0 to 0.8) | (ml /min) | -0.1 (-2.4 to 2.2) | -2.5 (-5.0 to 0.0) | -1.3 (-3.5 to 0.9) | -1.6 (-4.0 to 0.8) | | | | 2.2 (1.1 to 3.3) | 1.7 (-1.1 to 4.5) | 1.5 (-0.1 to 3.1) | 1.6 (-0.3 to 3.5) | | 2.6 (-3.0 to 8.2) | 3.8 (-13.5 to 21.1) | 2.9 (-7.0 to 12.8) | 3.2 (-9.2 to 15.6) | | | > 60 years (n = 80) | 1.8 (1.5 to 2.1) | -0.2 (-0.4 to 0.0) | -0.1 (-0.4 to 0.2) | 0.5 (0.3 to 0.7) | 30-59 | 1.3 (0.8 to 1.8) | -0.5 (-0.9 to -0.1) | -0.3 (-0.8 to 0.2) | 0.2 (-0.2 to 0.6) | | | | 2.8 (1.3 to 4.3) | 1.4 (0.8 to 2.0) | 1.5 (0.9 to 2.1) | 1.5 (0.9 to 2.1) | | 1.9 (-0.4 to 4.2) | 1.2 (-0.1 to 2.5) | 1.3 (-0.1 to 2.7) | 1.1 (0.2 to 2.0) | | | Male (n = 71) | 1.7 (1.3 to 2.1) | -0.2 (-0.6 to 0.2) | -0.1 (-0.4 to 0.2) | 0.5 (0.2 to 0.8) | 60-89 (n = 54) | 2.0 (1.7 to 2.3) | -0.1 (-0.5 to 0.3) | 0.0 (-0.4 to 0.4) | 0.7 (0.4 to 1.0) | | | | 2.3 (0.8 to 3.8) | 2.3 (0.8 to 3.8) | 1.3 (0.2 to 2.4) | 1.5 (0.1 to 2.9) | | 2.4 (1.1 to 3.7) | 1.3 (-0.5 to 3.1) | 1.3 (0.1 to 2.5) | 1.4 (0.3 to 2.5) | | | Female (n = 62) | 1.7 (1.4 to 2.0) | -0.2 (-0.5 to 0.1) | -0.4 (-0.7 to -0.1) | 0.5 (0.2 to 0.8) | ≥ 90 (n = 46) | 3.1 (2.7 to 3.5) | 0.1 (-0.1 to 0.3) | -0.6 (-0.9 to -0.3) | 1.2 (0.9 to 1.5) | | | | 2.2 (0.8 to 3.6) | 1.1 (0.2 to 2.0) | 1.4 (0.5 to 2.3) | 1.2 (0.6 to 1.8) | | 2.9 (1.0 to 4.8) | 1.0 (0.6 to 1.4) | 1.3 (0.9 to 1.7) | 1.5 (0.8 to 2.2) | | | Table 3 (continued): Bias and Precision for Total Daily Dose | | | | | | | | | |--|----------------------|--------------------------|----------------------------|----------------------------|--------------------------|--|--|--| | Dose
(mg) | Analysis
(95% CI) | Equation 1 | Equation 2 | Equation 3 | Equation 4 | | | | | < 300 (n = 18) | MPE (µmol/L) | 1.7 (1.1 to 2.3) | -0.2 (-0.5 to 0.1) | -0.3 (-0.8 to 0.2) | 0.5 (0.1 to 0.9) | | | | | | RMSE | 2.1 (-1.2 to 5.4) | 0.7 (0.4 to 1.0) | 1.2 (0.4 to 2.0) | 1.0 (0.5 to 1.5) | | | | | 300 (n = 53) | MPE (µmol/L) | 1.5 (1.0 to 2.0) | -0.6 (-1.1 to -0.1) | -0.6 (-1.0 to -0.2) | 0.2 (-0.3 to 0.7) | | | | | | RMSE | 2.3 (0.6 to 4.0) | 1.8 (-1.0 to 4.6) | 1.6 (-0.1 to 3.3) | 1.7 (-0.1 to 3.5) | | | | | 301-499 (n = 43) | MPE (µmol/L) | 1.7 (1.3 to 2.1) | -0.1 (-0.4 to 0.2) | -0.1 (-0.4 to 0.2) | 0.6 (0.3 to 0.9) | | | | | | RMSE | 2.0 (0.7 to 3.3) | 0.9 (0.0 to 1.8) | 0.9 (0.1 to 1.7) | 1.1 (0.4 to 1.8) | | | | | ≥ 500 (n = 19) | MPE (µmol/L) | 2.3 (1.7 to 2.9) | 0.2 (-0.4 to 0.8) | 0.3 (-0.3 to 0.9) | 1.0 (0.5 to 1.5) | | | | | | RMSE | 2.6 (-0.6 to 5.8) | 1.2 (-0.1 to 2.5) | 1.3 (0.0 to 2.6) | 1.5 (-0.2 to 3.2) | | | | | Table 4: Bias and Precision of New Equations | | | | | | | | | | | Measured Total PHT | | | | | | | | Predicted Free PHT = | Table 5: Dose Changes Made From Predictive Equations | | | | | | | | | | |--|--------|------------|----------|----------|------------|------------|-----------|----------|----------| | Equation | Actual | 1 | 2 | 3 | 4 | X | Y | Z | W | | > 8 µmol/L | 18 | 43 | 16 | 15 | 26 | 23 | 20 | 16 | 19 | | Changes to
Dose (n) | | 25 | 2 | 3 | 8 | 5 | 2 | 2 | 1 | | < 4 µmol/L | 47 | 21 | 48 | 49 | 36 | 38 | 39 | 44 | 43 | | Changes to
Dose (n) | | 26 | 1 | 2 | 11 | 9 | 8 | 3 | 4 | | Total (n, %) | | 51
(38) | 3
(2) | 5
(4) | 19
(14) | 14
(11) | 10
(8) | 5
(4) | 5
(4) | | D 11 | | | | | | | | | | # Results - The Winter-Tozer equation tended to overpredict - The Kane et al. equations (Equation 2 and 3) tended to underpredict - The Anderson et al. equation generally overpredicted - In general, there was more bias and imprecision associated with the Winter-Tozer equation than the other equations ### Conclusion - The overall predictive performance of the Winter-Tozer equation in this population was poor - We developed new derivative equations with reduced bias